Will the real Keras Hello World please stand up

Reading Time: < 1 minute

I realised recently that learning how to program neural networks is a major pain. To begin with, the underlying mathematics can get very hairy. Then to top it, code tutorials are not very helpful either. In particular, when I tried to look for the simplest Keras model, they were already talking about ReLUs and sigmoid activation etc. Funnily enough, while everybody started their explanations with perceptrons, nobody actually demonstrated this simplest neural network with Keras code.

A simple perceptron is capable of learning a simple linear fit. And it turns out it is trivial to do it with Keras. To my mind, that is the place one should start. So here’s the code.

from random import random
import numpy as np
from keras.models import Sequential
from keras.layers import Dense

X = [[random(), random(), random()] for _ in range(0, 100)]
y = [1.3 * x[0] + 0.5*x[1] - 0.8*x[2] for x in X]

X = np.array(X)
y = np.array(y)

model = Sequential()
layer = Dense(1, input_dim=3, kernel_initializer='zero')
model.compile(loss='mean_squared_error', optimizer='sgd')
model.fit(X, y, epochs=1000, batch_size=20)

Source link

Every Wednesday and Saturday, we send Info-Graphic and FinMedium Weekly Digest newsletters to our 25000+ Subscribers.

Join Them Now!



On a quest to understand what makes a business great and what makes a great investment.
Please Share :)